
SG-Library 4.7 Documentation: Introduction to the functional scope

(Status of: 2019-10-22 (c) by Tim C. Lueth, 85386 Eching-Dietersheim, Germany, Professor at Technical University of Munich)

The Solid Geometry Library is a Matlab toolbox with which geometric bodies, mechanisms, kinematics, and robots can be designed, simulated and shape-
optimized (FEM analysis) as a multibody system. STL files or medical image data can also be imported to link the design with machine elements or patient-
specific information.

- IF YOU WANT TO USE THE LIBRARY FOR DESIGN, OPTIMIZATION AND DYNAMIC SIMULATION OF SG, THE BEST WAY TO GET STARTED IS WITH
SOLID GEOMETRIES

- IF YOU WANT TO UNDERSTAND AND DEVELOP THE LIBRARY, START WITH THE DATA STRUCTURES.

In contrast to CSG modeling, the SG library is based on surface data.

The SG library has been developed since the end of 2010 with the goal of being able to design robots and mechanisms automatically so that the development
time of individual robots for medicine and care in combination with additive production and laser cutting is massively accelerated and the number of necessary
drives is minimized.

Contents

New and not yet assigned:

1 Data Structure and Manipulation:

1.1 Point List Manipulation:

1.2 Vertex List Manipulation:

1.3 Transformation Matrices:

1.4 CPL as NaN Separated List:

1.5 Edge List Manipulation (PL/VL):

1.6 Facet List Manipulation (PL/VL):

1.7 Tetraderon List Manipulation (VL):

1.8 VLFL Manipulation:

1.9 SG Manipulation:

2 Analytical Geometry: Basic functions for geometric calculations

2.1 Graphical User Interface:

2.2 Geometry Drawings: Geometric drawings

2.3 Plot Annotation: Labeling of drawings

2.4 Crossing points and tangents: Geometric calculations

2.5 Planar and Spatial Transformation: Description of motion and rotation

3 Polygons and Contours: Processing of lines, edges and circular contours in 2D and 3D

3.1 Single 2D Polygons (PL): Point lists in the 2D plane

3.2 Closed Nested 2D Polygons (CPL): Encapsulated boundary contours in the 2D plane

3.3 Planar 3D Polygons (VL): Planar contours in 3D space

3.4 Spatial 3D Polygons (CVL): Point lists in 3D space

3.5 General PL functions: Point list manipulation

3.5.5 PL modification: Forming of point lists

3.5.6 Crossing Points: Crossing Points of PL

3.5.7 Boolean Operation: Boolean Operations for PL

3.5.8 PL comparision: Comparison, assignment and transfer of PL

3.6 CPL to Surfaces: Surfaces from spatial contours

3.7 CVL to Solid Geometries: Surfaces from spatial contours

4 Surfaces: Processing of open or closed tesselated surfaces in 2D and 3D

4.1 2D Surfaces: Surfaces in the 2D plane

4.2 3D Surfaces: Open and closed surfaces in 3D space

4.3 Feature Surfaces: Feature Edges and Feature Surfaces

4.4 Surfaces to Solid Geometries: Solid bodies from open surfaces

5 Solid Geometry Modeling: Generation of surface models

5.0 SG basic shapes: Generation of elementary solid bodies

5.1 Spatial Transformation: Spatial rotation and movement of SG

5.2 SG of CPL Extrusion: Extrusion of boundary contours

5.3 SG of CPL Connections: Connecting boundary contours

5.4 SG of Meshes: Creates SG from lines, edges, meshes

5.5 SG Cutting: Cutting SG into several parts

5.6 SG Boolean Operations: Boolean operations with surface models

5.8 SG Slicing: Layer separation of SG

6 Frames and Kinematics: Generation of coordinate systems and kinematic chains

6.1 Frame Definition : Attaching Frames to a Solid Geometry

6.2 Kinematics Chains: Creating Numerical Kinematic Chains

6.3 Forward and Inverse Kinematic: Robotics

6.4 Symbolic Definitions: Creating Symbolic Kinematic Chains

6.5 Fourbar Linkage: Mechanism Design

7 Automatic Design, Optimization, Simulation: Solid Geometries, Joints, Mechanisms, Robotics

7.1 Parameterized Shape Generation:

7.2 Parameterized Links and Joints: SG for mechanisms

7.3 Automatic Shape Generation:

7.4 FEM and Shape Optimization: Analysis and shape optimization of SG with the PDE toolbox

7.4.1 Mesh and Model Creation:

7.4.2 Load Definition and FS:

7.4.3 Stress and Displacement:

7.4.4 Shape Optimization:

7.5 Multi-Body Simulation: Dynamic multibody simulation with Simulink/Simscape/Multibody

8 STL & 3D Printing & Voxel Models: Handling of STL, DICOM, CVG for 3D printing and lasercutter

8.1 STL Import/Export: Reading and writing STL files

8.2 STL Packaging: Spatial arrangement of SG

8.3 STL Surfaces Analysis: Analysis of closed surfaces

8.4 SVG Export: Export of cut contours

8.5 Voxel Models: Conversion between SG and Voxel models

8.5.5 VM Import & Scaling:

8.5.6 VM Visualization:

8.5.7 VM to VL, CPL:

8.5.8 VM to SG Surface Model:

9 Testing and Test Generation: Systematic testing of geometries and functions

9.1 Sample Generation: Generation of PL, CPL, VL, CVL, VLFL, SG, CSG etc.

9.2 Test Generation: Methods for the systematic testing of functions

9.3 SG Check: Detection and repair of defects in surface models

9.4 SG Repair:

9.5 Software Development:

The functions are separated into the following toolbox sections:

1 Data Structure and Manipulation:

2 Analytical Geometry: Basic functions for geometric calculations

3 Polygons and Contours: Processing of lines, edges and circular contours in 2D and 3D

4 Surfaces: Processing of open or closed tesselated surfaces in 2D and 3D

5 Solid Geometry Modeling: Generation of surface models

6 Frames and Kinematics: Generation of coordinate systems and kinematic chains

7 Automatic Design, Optimization, Simulation: Solid Geometries, Joints, Mechanisms, Robotics

8 STL & 3D Printing & Voxel Models: Handling of STL, DICOM, CVG for 3D printing and lasercutter

9 Testing and Test Generation: Systematic testing of geometries and functions

New and not yet assigned:

(Status of: 2019-10-22 (c) by Tim C. Lueth, 85386 Eching-Dietersheim, Germany, Professor at Technical University of Munich)

There are some functions and experiments that are not yet assigned to certain chapters of the SG-Lib. Until these functions are assigned, they are listed here:

1 Data Structure and Manipulation:

(SG-Library 4.7 Documentation -> Data Structure and Manipulation)

The Solid Geoemtry Toolbox has not been written object-oriented, but could easily be reworded if necessary. From the authors' point of view, the main reason is
the automatic addition of function names using the tab key, which does not work properly with object-oriented programming methods, but extremely accelerates
the search for suitable functions when using the Toolbox.

The Solid Geometry Toolbox uses few data structures.

They are

PL - 2D point lists

VL - 3D Point Lists

R - Rotary matrices[3x3 in 3D and[2x2] in 2D

HT - Homogeneous transformation matrices[4x4] in 3D or[3x3] in 2D

CPL - closed 2D point lists separated by NaN

CVL - closed 3D point lists separated by NaN

EL - sorted or unsorted edge lists that can be sorted and separated

FL - sorted or unsorted area lists that can be sorted and separated

TL - sorted or unsorted tetreder lists that can be sorted and separated

CEL/CIL/SEL/ - sorting index lists for EL, FL and TL

SG - struct from VL and FL or cell list of these structures

SGT - struct from VL and FL as well as transformation matrices for frames

The function names typically specify the result type of the function with the first 2 letters.

The functions are separated into the following toolbox sections:

1.1 Point List Manipulation:

1.2 Vertex List Manipulation:

1.3 Transformation Matrices:

1.4 CPL as NaN Separated List:

1.5 Edge List Manipulation (PL/VL):

1.6 Facet List Manipulation (PL/VL):

1.7 Tetraderon List Manipulation (VL):

1.8 VLFL Manipulation:

1.9 SG Manipulation:

1.1 Point List Manipulation:

(SG-Library 4.7 Documentation -> Data Structure and Manipulation -> Point List Manipulation)

Point list are a single sequence of x and y values like:

PL=[x1 y1, x2 x2 x2 x2; x3 y3; x4 y4; x4 y4;

Example: PL=[0 0; 10 0; 10 10 10; 0 10]]].

The first point and the last point are not the same (difference to CPL).

Example: PL=rand(10,2); PLplot(PL); view(0,90)

The following toolbox functions belong to this group:

PLofVL(VL) - Converts a planer VL[nx3] into a PL [nx2]

PLofVLFL(VL,FL,fi) - returns the 2D representation for a planar VLFL

PLofFloorPlan(FP) - Returns a point list from a distance angle list

PLofVLprojection(VL,pc,pt,cup,sc,isize) - returns image point on a target screen

PLofimcontourc(I,cent,pixs) - returns the centers of pixel coordinates in an image

PLtransform(PLA, PLB, sl,CL); - transform one PL into another

1.2 Vertex List Manipulation:

(SG-Library 4.7 Documentation -> Data Structure and Manipulation -> Vertex List Manipulation)

Vertex lists are a single sequence of X, Y and Z values such as:

VL=[x1 y1 z1, x2 y2 z2; x3 y3 z3; x4 y4 z4; x5 y5 z5;

Example: VL=[0 0 0 0; 10 0 0; 10 10 0; 0 10].

The first point and the last point are not the same (difference to CVL).

Example: SGfigure; VL=rand(10,2); VLplot(VL); view(-30,30)

The following toolbox functions belong to this group:

VLofCVL(CVL) - creates a Contour index list for a CPL/CVL

VLunidirect(VL,thr) - returns a unidirected vector ist

1.3 Transformation Matrices:

(SG-Library 4.7 Documentation -> Data Structure and Manipulation -> Transformation Matrices)

The SG-Lib uses translation vectors, rotation matrices[2x2] or[3x3] and homogeneous transformation matrices[4x4] where the last line is always[0 0 0 1] and
where scaling and mating are not evaluated!

In addition, starting with SG-Lib version 4.2, transformations of the RobotikToolbox (Peter Corke) are also used.

The following toolbox functions belong to this group:

TofVLUL(VL,UL,i) - returns the HT matrix of the origin of an union area!

TofVL(VL,ez,force) - returns the main axis of a vertex list or SG

TofVLULez(VL,UL,ez) - returns an HT Matrix of the specified Union

TofPCVL(CVL) - returns the HT matrix for a planar contour vertex list

TofDPhiH(D,Phi,H) - returns a 4x4 transformation matrix

TofSGML(SG,mi,fe) - returns HT for a mounting face with known number

TofSGMLez(SG,ez,ai,fe) - returns HT for a mounting face with known ez

TofR(R,t) - returns a HT matrix for an R matrix

TofDPhi(D,Phi) - returns a 3x3 HT matrix for 2D link

TofSG(SG,rel) - sets a HT matrix relativ to nested solid

TofPEul(p,eul) - return from euler angle and position an HT matrix

TofPez(p,ez) - creates a T matrix from point and ez-Vector

TofP(p) - returns a T matrix from a point in 2D or 3D

Tof2vec(p1,p2,q1,q2) - returns transformation matrix based on the 2 point movements

TofVLprojection() - returns the HT matrix of camera based on a VL and Projection image PL

Tofcam(pc,pt,cup) - returns HT matrix of camera and target for a given camera point, target point, and camera up vector

TofFS(TR,Nr,fe,FS,Rz,dz) - returns a HT matrix for a speficied feature surface

TofT(T0,R,P) - returns a T matrix defined relative to another T matrix

1.4 CPL as NaN Separated List:

(SG-Library 4.7 Documentation -> Data Structure and Manipulation -> CPL as NaN Separated List)

Matlab uses several different concepts to display multiple contours in a list. So the contourc function uses a different representation than the closed polygon list of
the mapping toolbox. The SG-Lib uses the CPL format of the mapping toolbox. Individual point lists are separated from each other by a[nan nan] line. Optionally,
the last point of a contour is also the last point. This second rule is not always observed in the SG-Lib

Correspondingly there are then also functions for the conversion of the contourc format into the CPL format or PL into CP etc.

The following toolbox functions belong to this group:

CPLofPLEL(PL,EL) - returns a polybool contour from PL and EL

CPLofPLFL(PL,FL,bound) - returns a polybool contour from PL and each edge of FL

CPLplot(CPL,c,w,t,b,f) - plots a 2D polybool contour polygon in a 3D figure

CPLuniteCPL(CPL) - returns a correct directed closed polygon list from a undirected closed polygon list

CPLisccw(CPL) - returns index list for CPL direction

CPLcircshift(PL,cl) - shifts & closes a PL. First point is [minx miny]

CPLorder(CPL,smax) - returns an xy ordered and shifted CPL

CPLremstraight(CPL) - removes points from straight lines in all contours of CPL

CPLrecontour(CPL,frm) - returns a contour list for a sliced/cutted object

CPLofPL(PL) - appends the first point to a point list of required

CPLnonmanifold(CPL) - true if a point is used twice in the CPL or PL

CPLcopypattern(CPL,number,delta) - creates patterns by copying CPLs

CPLunite(CPL,ord) - returns a CPL that has no crossing lines anymore

CPLedgeNormal(CPL) - returns edge normals and point normals for a CPL

CPLinvert(CPL,add) - Change the direction of all contours in a CPL

CPLofplateSG(SG) - returns for a flat plate solid its contour

CPLfillPattern(CPL,CPLA,w,d,cut,pc) - fills a contour with copies of a pattern

CPLinsideCPL(CPL,CPLs) - returns the contours of a CPL that inside another CPL

CPLgrow(CPL,w,edge,unid) - grows a contour line in a distance

CPLofVLFL(VL,FL,fi) - creates a CPL and T of a planar VL,FL

CPLsortC(CPL,ctype,CA) - returns a contour that start with angle -pi

CPLgrowEdge(CPL,w) - grows a contour line in a distance

PLcrossCPLline(CPL,pa,pb,touch,full) - return the crossing point of a CPL and a line

CPLcopypatternPL(CPL,PL,dw) - copies a CPL at positions of a PL

CPLremnoise(CPL,r,maxw) - returns a smoother CPL

iscrossingCPL(CPLA,CPLB,touch) - checks crossing/touching of two CPLs

CPLofBB(BB,d) - returns a CPL around a 2D Bounding Contour BB

CPLtextimage(text,dt,f,sx,sy,sz,ha) - returns contour of text string

CPLfillHoneycomb(PLs,w,d,ww,n) - fills a contour with honeycomb

CPLarea_2016(CPL,sep) - returns the area of the surfaces (VL/PL)

SGofCPLCVLR(CPL,CVL,R,R1,R2) - Returns a solid of a contour along a path

PLofCPL(CPL) - converts a nested CPL into a nested PL

CPLfaceplot(PL,c,w,a) - plots the faces of a CPL

CPLoutercontour(CPL,out) - returns for a CPL the outer contour wrt cw/ccw-orientation

CPLsortinout(CPL,in1st) - returns a inside outside sorted CPL

CPLofimage(I,n,f) - returns a point list related to matlab;s contour function

CPLofcontourc(C,rem) - converts the contourc format into the CPL format

CPLoftext(str,siz,FW,FN) - returns a CPL of one or more textlines separated by \n

CPLcontourc(Inputparameter) - returns the CPL of matlab's contourc command

CPLaddauxpoints(CPL,d) - add supporting points to embedded CPL to guarantee a specified points distance

CPLunitesorted(CPL) - returns sorted and added closed polygons

CPLofmeshgrid(X,Y) - returns two grid line templates

BBofCPL(CPL,zmax,d) - returns the bounding box of a CPL

centerCPL(CPL) - returns the center of all contours of a CPL

CPLisccwinout(CPL) - returns which contour has the right orientation wrt shell and orientation

CPLisccwcorrected(CPL) - returns a CPL with all CPLs in correct orientation cw/ccw

CPLconvexseg(CPL) - returns the segments of convex and concave contours a CPL.

CPLcorrelate(CPLA,CPLB) - correlates the contours from two CPLs

circshiftCPL(CPL,n) - returns a circular shifted CPL

delaunayofCPL(CPLB) - more sharp delaunay triangulation in 2D (planar case)

CPLdisttopoint(CPL,p); - returns the minmal distance between a contour and a given point

1.5 Edge List Manipulation (PL/VL):

(SG-Library 4.7 Documentation -> Data Structure and Manipulation -> Edge List Manipulation (PL/VL))

The structures Edge List (EL), Facet List (FL) and Tetrahedron list (TL) are to be fixedly divided with the Delaunay trinagulation or the method point sets by
drawing boundary edges, boundary surfaces or boundary volumes.

In PL planar point lists, edges and their direction of rotation are used to separate inside and outside surfaces. The delimited contours can be filled with triangular
surfaces, whereby the boundary edges influence the surface formation. The boundary edges are therefore also called constraints.

In spatial vertex lists surfaces are used to separate inside and outside from volume. The delimited volumes can be filled with tetrahedra, whereby the interfaces
influence the formation of tetrahedra. In volume decomposition, the interfaces are therefore also called constraints.

The SG-Lib offers functions to convert CPL or CVL contours into EL. EL, FL, TL to sort and separate, find open ends or open edges or open surfaces, etc.

Since EL can in principle be unsorted, they must occasionally be sorted and assigned to closed contours or nets. So-called index lists are generated which, after
sorting or grouping, specify which consecutive points of an EL belong to a group.

Since SG-Lib 4.2 the graph classes are used for this.

The following toolbox functions belong to this group:

ELofCVL(VL,close) - returns a simple edge list for a vertex list

ELofFL(FL) - converts a facet list into an edge list (simple)

ELofn(n) - returns an edge list for a contour of n points

ELofFLborder(FL) - returns the border edges of a open 3D or closed 2D surface

ELofFLborder2(FL) - returns the border edges of a surface

ELofjointFL(FL1,FL2) - returns a list of joint edges of two facet list

ELofCIL(CIL,cl) - Converts a Contour Index List into an Edge list

ELofELmesh(EL) - returns a separated EL consisting of independent meshes and a rest of points and lines

ELseparate(EL,jv) - reorders the edge list (triangle, tetrahedron) to individual polygons, surfaces, solids

1.6 Facet List Manipulation (PL/VL):

(SG-Library 4.7 Documentation -> Data Structure and Manipulation -> Facet List Manipulation (PL/VL))

The rows of a facet list define triangular areas and the order of vertex indices within a vertex list of a triangle simultaneously defines the direction of the normal
vector.

FL=[vi1 vi2 vi3;vj1 vj2 vj3; vk1 vk2 vk3; etc].

FL can be tesselated planar with the delaunayTriangulation in 2D as PLFL

FL can be spatially tesselated with the delaunayTriangulation in 3D as VLFL.

Also in Matlab 2018b the delaunay triangulation fails if planar surfaces are decomposed in 3D. In this case the surface can be transformed into the plane with the
help of TofVL. A planar tessellation takes place and this then also applies in 3D.

The following toolbox functions belong to this group:

FLselect(FL,vi) - returns all neighbor facets of vi

FLseparate(FL,jv) - reorders the edge list (triangle, tetrahedron) to individual polygons, surfaces, solids

1.7 Tetraderon List Manipulation (VL):

(SG-Library 4.7 Documentation -> Data Structure and Manipulation -> Tetraderon List Manipulation (VL))

The lines of a tetrahedron list[v1 v2 v3 v4] describe the vertex indices of the 4 surfaces. The 4 faces are: FL=[2 3 4;2 4 1;4 3 1;2 1 3];

Currently the DelaunayTriangulation, the AlphaShape function and the pde-Toolbox can generate the tetrahedron model from point clouds VL. However, only the
pde Toolbox can link surface models to tetrahedral models.

The following toolbox functions belong to this group:

VLFLofTR(TR) - returns the freeboundary surface of a tetrahedron or the surface of a triangulation

TLseparate(TL,jv) - reorders the edge list (triangle, tetrahedron) to individual polygons, surfaces, solids

1.8 VLFL Manipulation:

(SG-Library 4.7 Documentation -> Data Structure and Manipulation -> VLFL Manipulation)

Since the edge lists, facet lists and tetrahedron lists refer to indices of a vertex list, the corresponding EL/VL/TL must be adjusted if the vertex list changes.
Accordingly, it must be possible to convert new created areas back into the old vertex lists and, if necessary, append new points to the original list.

The following toolbox functions belong to this group:

VLFLcat2(V1,F1,V2,F2) - appends without any check a vertex list after another and also a facet list

VLFLcat(V1,F1,V2,F2) - concatenates two solids and removes double vertexes

VLFLshort(VL,FL) - shortens a vertex list to the vertices that are really used in the facet list

VLFLcat(VLA,FLA,VLB,FLB) - returns combined solid geometries

VLFLshort2(VL,FL,thr) - shortens a vertex list to the vertices that are really used in the facet list

1.9 SG Manipulation:

(SG-Library 4.7 Documentation -> Data Structure and Manipulation -> SG Manipulation)

The simplest version of an SG is a struct with the FElder VL and FL. SG can also have other formats. You can add further fields

SG.VL - Vertex list

SG.FL - Facet List

SG.col: - Facet Color

SG.Tname: - Cell list of frame names

T: - Cell List of[4x4] HT matrices

TFil - Cell list of facets that define the T Transformation matrix

TFoL: - Cell list of facets that are attached to TFiL

SGs can also be defined as cell lists of several SGs

SG={SGA, SGB, SGC, ...}

Accordingly, some functions are designed recursively, others connect cell list to a frame

The following toolbox functions belong to this group:

SGmelting(SG) - returns a surface model without intrusion of solids

SGsurfacemeltbool(SG,si,Amin,grw) - returns a solid which surfaces were added using SGbool

2 Analytical Geometry: Basic functions for geometric calculations

(SG-Library 4.7 Documentation -> Analytical Geometry)

Analytical geometry is an important basis for the automatic construction of mechanisms. This also applies to the modeling of bodies and their intersection. For this
reason, there are a number of functions that seemingly solve simple geometric tasks:

The functions are separated into the following toolbox sections:

2.1 Graphical User Interface:

2.2 Geometry Drawings: Geometric drawings

2.3 Plot Annotation: Labeling of drawings

2.4 Crossing points and tangents: Geometric calculations

2.5 Planar and Spatial Transformation: Description of motion and rotation

2.1 Graphical User Interface:

(SG-Library 4.7 Documentation -> Analytical Geometry -> Graphical User Interface)

The SG-Lib provides a modified figure command which supports some important menu items as well as a possibility to touch 3D structures by mouse click. This
makes it possible to build interactive user interfaces that can be converted as EXE or App to a Stand-alone function.

The following toolbox functions belong to this group:

VLFLplotlight (mode,al,goh,c) - switches the light and renderer on for VLFLplots and VLFLplots4

select3d(obj) - Determines the selected point in 3-D data space.

VLui(m,res,axcol,cplline,psdraw,linw,opl) - returns a vertex list drawn by the user in a plot window

VLofgca(allpoints) - returns all vertices of the current figure patches

snapplot (pname) - saves the current figure as JPG-File on the user desktop

VLFLofgca - returns the vertex list and facet list of the current figure

imreadui(fname,clip) - reads an image file and opens dialogs to clip and scale the image

immeasureui(imf) - user interface to measure distances within an image using mouse clicks

appsavegcaSTL - Application callback procedure for writing the current figure as STL

VLFLfigure() - Application for opening and viewing STL Files

SGfigure() - Application for opening and viewing STL Files

pixelofaxis - returns the axis position of the current axis in the figure

SGtitle(n,w) - draws the name of the calling fnct as figure title

setgcapixelsize(siz) - sets the current gca to a default pixelsize

getgcapixelsize - returns the position of the gca in the current figure

patchofgca(gh) - returns all patches of the current graphics axis

Tofgca - returns the HT matrix of the current camera position

setplotlight(hi,col,alpha); - changes the alpha value of a given graphics object handle

SGofgca(hgca) - returns the solid of the current figure

SGfigureannotation(str,bc,sz,sl,hl) - creates a simple help text annotation into the current figure

SGfiguremovie(fname,mtime,angle,ofs) - creates a movie from a simple rotating view point in MP4 Format

gcahandleofSG - returns the handle to all patches of gca

2.2 Geometry Drawings: Geometric drawings

(SG-Library 4.7 Documentation -> Analytical Geometry -> Geometry Drawings)

These functions are used to draw one or more points, vectors, angles, coordinate systems, planes in 2D and 3D in order to display the results of geometric
procedures comprehensibly on the screen.

The following toolbox functions belong to this group:

lplot(p1,p2,c,w,ts,ss,str,fs) - plots a straight line between 2 points

tfplot(T,f,a,c1,c2,c3) - plots an HT matrix including the x/y plane

tlplot (T,c,l) - plots a line given as HT matrix using t+k*ez

slplot (p,ez,c,w,l,d) - straight line plot

T2plot(p,c,w,N,N) - plots a HT matrix as straight line vector

plotTP (T,f,a,c1,c2,c3) - plots the basic planes of a coordinate system

plotL(T,c,s,w,N) - plots a HT-matrix as straight line

aplot(pc,la,lb,c,w,r,alpha) - draws an angle relative to a center and two vectors

plotT(T,s,w,N,ts) - plots a coordinate system given as HT matrix

2.3 Plot Annotation: Labeling of drawings

(SG-Library 4.7 Documentation -> Analytical Geometry -> Plot Annotation)

With this function point lists, edge lists, surface lists and vertex lists as well as coordinates and angles can be labeled.

The following toolbox functions belong to this group:

textVL(VL,c,s,nt,lb) - plots descriptors for each vertex in the figure using the text command

textP(p,str,delx,dely,Fnts) - draws a texlabel text at the position

textT (T,TStr,c,s) - drawn a text at the position of a HT matrix

textCVL (CVL,c,s,nt,lb) - plots descriptors for each contour into a figure using text command

textVLFL(VL,FL,c,s,nt,lb) - plots descriptors for each facet in the figure using the text command

textVLFS(VL,FL,FSi,c,s,nt,lb) - plots descriptors for each feature surface and the corresponding feature edges

2.4 Crossing points and tangents: Geometric calculations

(SG-Library 4.7 Documentation -> Analytical Geometry -> Crossing points and tangents)

These functions calculate intersections, tangents or circle segments between lines and circles in 2D

The following toolbox functions belong to this group:

crossz(pa,pb) - calculates in 2D only the z-part of the cross product and handles values near zero

PLcross2Lines(A,B,C,D) - returns the crossing point of 2 lines in [x y]

cross2circ(A0,B0,ra,rb); - returns the crossing points of two circles

PLof3dist(d1,d2,d3,srt) - creates a 3P Tracker geometry using the given distances

tangent2circ(A0,B0,ra,rb) - returns outer and inner tangents of 2 circles

PLchordof2PR(PL,R,rhand) - returns a radial segment for a given chord and a radius

crosscircline(C,R,p,ez) - returns the cross points of a circle and a straight line

2.5 Planar and Spatial Transformation: Description of motion and rotation

(SG-Library 4.7 Documentation -> Analytical Geometry -> Planar and Spatial Transformation)

This group of functions creates and changes homogeneous transformation matrices in 2D ([3 x 3]) or 3D ([4 x 4])

The following toolbox functions belong to this group:

VLtransT(VL1,T) - transforms all points of a vertex list using an HT matrix

VLtransP(VL,P) - Moves all points of a vertex list using a translation vector p

VLtrans1(VL) - moves an object into the first quadrant

VLtrans0(VL) - moves an object into the origin of the coordinate system

VLtransR(VL,R) - transforms all points of a vertex list using a rotation matrix

VLtransT(VL,T) - returns a transformed Vertex list

PLtransP(PL,p) - returns a translated point list

PLtransR(PL,R) - rotates all point of a point list

PLtrans(PLin,T) - multi transformation modes for a point list

PLtrans0(PL) - returns an origin centered point list

PLtrans1(PL) - returns a point list moved into the first quadrant

PLtransT(PL,T) - rotates and moves a point list nx2

VLtrans(VLA,T) - return similar to PLtrans or SGtrans a transformed VL

VLtransN(VLO,FLO,s,d) - returns a relative to normal vectors transformed vertex list

PLtransC(PL,C,w) - rotates a point list around a center

3 Polygons and Contours: Processing of lines, edges and circular contours in 2D and 3D

(SG-Library 4.7 Documentation -> Polygons and Contours)

Polygons (PL) are point lists in 2D or 3D space. In 3D they are called Vertex Lists (VL) in the SG-Lib.

Closed Point Lists (CPL) are point lists in which the last point is identical to the first point of the list.

Encapsulated point lists (CPL) can consist of several point lists that are separated from each other via[x1 y1; nan nan; x1 x1,...] in the same list.

With the Delaunay triangulation or other tessellation functions, closed point lists can be used as boundary edges of surfaces.

The functions are separated into the following toolbox sections:

3.1 Single 2D Polygons (PL): Point lists in the 2D plane

3.2 Closed Nested 2D Polygons (CPL): Encapsulated boundary contours in the 2D plane

3.3 Planar 3D Polygons (VL): Planar contours in 3D space

3.4 Spatial 3D Polygons (CVL): Point lists in 3D space

3.5 General PL functions: Point list manipulation

3.6 CPL to Surfaces: Surfaces from spatial contours

3.7 CVL to Solid Geometries: Surfaces from spatial contours

3.1 Single 2D Polygons (PL): Point lists in the 2D plane

(SG-Library 4.7 Documentation -> Polygons and Contours -> Single 2D Polygons (PL))

A simple polygon course is a list PL=[x1 y1; x2 y2; x3 y3;...]]

The polygon course does not necessarily have to be closed. If the first point and the last point are identical, we speak of a CPL.

With this group of functions frequently used 2D point lists[n x 2] of the form[x1 y1; x2 y2...] can be generated. Examples are circles, ellipses, spirals, involutes,

kidneys, stars, ovals, etc.

The following toolbox functions belong to this group:

PLhelix(R,d,w2,w1,err) - generates a list of points for a specified helix/spiral

PLcircle(R,nf,dw,Ry,ow) - returns a 2D point list of a circle or circle segment

PLevolvente(r,w,n) - returns the point list of an evolvente curve

PLgearDIN_2012(m,z,gap,tig,n,rsp,x) - returns a gear contour wrt DIN from 9 to 48 teeth (ORIGINAL PLgearDIN fnct OF 2012)

PLsquare(X,Y,dx) - returns a 4 point list describing a rectangle or trapeze in 2D

PLcircseg(R,n,phiA,phiB,Ry) - returns a PL for a circle segment

PLrand(n,r,c) - returns a point list with random points

PLstar(R,nf,dw,Ry,ow,sk) - returns a 2D point list of a star or star segment

PLkidney(RI,RO,w,n) - returns a kindey shaped point list

PLspiral(RI,RO,wm,n) - return the PL of a spiral

PLcircleoval(R,n,L,Ri) - returns a circle-based-oval point-list

3.2 Closed Nested 2D Polygons (CPL): Encapsulated boundary contours in the 2D plane

(SG-Library 4.7 Documentation -> Polygons and Contours -> Closed Nested 2D Polygons (CPL))

3.3 Planar 3D Polygons (VL): Planar contours in 3D space

(SG-Library 4.7 Documentation -> Polygons and Contours -> Planar 3D Polygons (VL))

3.4 Spatial 3D Polygons (CVL): Point lists in 3D space

(SG-Library 4.7 Documentation -> Polygons and Contours -> Spatial 3D Polygons (CVL))

3.5 General PL functions: Point list manipulation

(SG-Library 4.7 Documentation -> Polygons and Contours -> General PL functions)

The functions are separated into the following toolbox sections:

3.5.5 PL modification: Forming of point lists

3.5.6 Crossing Points: Crossing Points of PL

3.5.7 Boolean Operation: Boolean Operations for PL

3.5.8 PL comparision: Comparison, assignment and transfer of PL

3.5.5 PL modification: Forming of point lists

(SG-Library 4.7 Documentation -> Polygons and Contours -> General PL functions -> PL modification)

The following toolbox functions belong to this group:

isconvexPL(PL) - return S>0 if PL (n x 2) is convex.

PLconvexhull(PL) - returns the convex hull of a 2D point [nx2] list

3.5.6 Crossing Points: Crossing Points of PL

(SG-Library 4.7 Documentation -> Polygons and Contours -> General PL functions -> Crossing Points)

While the function of analytical geometry has the task of calculating intersections of ideal circles or lines, the function of this group has the task of processing
polygon courses as they are also used in the mapping toolbox, for example.

For the intersection point calculation the Delaunay triangulation is almost always used.

The following toolbox functions belong to this group:

CPLsplitpoints(CPL) - Splits non manifold points in a CPL

PLsplitpointsofCPL(CPL) - returns splitpoints created by delaunaytriangulation

3.5.7 Boolean Operation: Boolean Operations for PL

(SG-Library 4.7 Documentation -> Polygons and Contours -> General PL functions -> Boolean Operation)

The following toolbox functions belong to this group:

PLELboolAuB(PLA,ELA,PLB,ELB) - returns union set of two 2D Point closed contours

PLELboolAmB(PLA,ELA,PLB,ELB) - returns A minus B: Subtraction set of two 2D Point closed contours

PLELboolAiB(PLA,ELA,PLB,ELB) - returns A intersects B: Intersection set of two 2D Point closed contours

PLELboolABcheck (PLA,ELA,PLB,ELB) - checks the spatial relationship of two contour planes

PLELboolAiBx(PLAorg,ELA,PLBorg,ELB) - returns A intersects B: Intersection set of two 2D Point closed contours

PLELboolAuBx(PLAorg,ELA,PLBorg,ELB) - returns union set of two 2D Point closed contours

PLELboolAmBx(PLAorg,ELA,PLBorg,ELB) - returns A minus B: Subtraction set of two 2D Point closed contours

CPLpolybool(flag,CPLA,CPLB,s) - Utilizes the polybool fnct for VLFL-LIb

3.5.8 PL comparision: Comparison, assignment and transfer of PL

(SG-Library 4.7 Documentation -> Polygons and Contours -> General PL functions -> PL comparision)

The following toolbox functions belong to this group:

PLcorrelate(PLA,PLB,stype,ctype,mtype) - returns the correlation of two single point lists

3.6 CPL to Surfaces: Surfaces from spatial contours

(SG-Library 4.7 Documentation -> Polygons and Contours -> CPL to Surfaces)

The following toolbox functions belong to this group:

FLcontourwallELn(EL,n) - returns the wall facets between 2 contours given by an edge list

3.7 CVL to Solid Geometries: Surfaces from spatial contours

(SG-Library 4.7 Documentation -> Polygons and Contours -> CVL to Solid Geometries)

The following toolbox functions belong to this group:

VLFLofCVLdelaunay2D(CVL); - returns a triangulation for an almost planar CVL

VLFLofVLELdelaunay3D(OVL,EL) - returns the top and below tesselation for ONE closed vertex list which cuts a convex solid into two parts

VLFLofCVLdelaunay3D(CVL) - returns the top and below tesselation for ONE closed vertex list which cuts a convex solid into two parts

4 Surfaces: Processing of open or closed tesselated surfaces in 2D and 3D

(SG-Library 4.7 Documentation -> Surfaces)

Facets, Surfaces or Surfaces can only be viewed together. Many surfaces from CAD programs are not "waterproof", so they have open edges. Feature Surface,
the surfaces between edges with a transition angle above an alpha threshold value, are always defined by the feature edges and are always open. The triangular
surfaces are tessellated from circular edges, whereby matlab has two approaches.

Mapping Toolbox: Fill Polygon

Matlab: Delaunay triangulation

The functions are separated into the following toolbox sections:

4.1 2D Surfaces: Surfaces in the 2D plane

4.2 3D Surfaces: Open and closed surfaces in 3D space

4.3 Feature Surfaces: Feature Edges and Feature Surfaces

4.4 Surfaces to Solid Geometries: Solid bodies from open surfaces

4.1 2D Surfaces: Surfaces in the 2D plane

(SG-Library 4.7 Documentation -> Surfaces -> 2D Surfaces)

Planar surfaces in 2D always consist of a 2D point list and a surface list. They always have edge contours, which are described via an edge list.

The creation of the polygons is possible via the

Delaunay Triangulation (Matlab) or via the function poly2fv (Mapping Toolbox).

The following toolbox functions belong to this group:

FLofPLEL(PL,EL) - returns tessellation of a 2D points list and contour edge list

GPLauxgridpointsPLEL(PL,EL,dx,dy) - returns for a given 2D contour point list auxiliary points to define a plane surface

VLFLspherecurvedPLEL(PL,CEL,R,d) - returns VL and FL for a sphere-curved surface given by a point list and contour edge list

PLELDelaunay(PL,EL) - return the Delaunay Triangulation

PLFLselect(PL,FLG) - returns only the required points for a given edge list. The edge list is reindexed

PLFLofCPLdelaunay(CPL,ADDVL) - Returns 2D point list and facet list of a triangulated contour

CPLunitePLFL(PL,AFL) - returns the enclosing contour point list for a 2D triangulated surface

PLFLfaceNormal(PL,FL,fi) - returns the rounded (1e-5) length of the area size/length of normal vector

PLFLofVLELdelaunay(VL,EL) - closes a planar surface of VLEL by delaunay

PLFLofCPLdelaunayGrid(CPL,ds,dx,dy) - returns a point list and facet list for a grid filled contour list

4.2 3D Surfaces: Open and closed surfaces in 3D space

(SG-Library 4.7 Documentation -> Surfaces -> 3D Surfaces)

4.3 Feature Surfaces: Feature Edges and Feature Surfaces

(SG-Library 4.7 Documentation -> Surfaces -> Feature Surfaces)

4.4 Surfaces to Solid Geometries: Solid bodies from open surfaces

(SG-Library 4.7 Documentation -> Surfaces -> Surfaces to Solid Geometries)

There are a whole series of problems in which one or more surfaces open at the edge are obtained, which one would like to transform from a two-dimensional
surface into a three-dimensional body.

Typical applications are the processing of surfaces of scanned objects such as people or clothing etc.

The following toolbox functions belong to this group:

SGofSurface(OVL,OFL,t,d,s,cn) - returns a fitting solid relativ to a surface

5 Solid Geometry Modeling: Generation of surface models

(SG-Library 4.7 Documentation -> Solid Geometry Modeling)

This function group can be used to design solid bodies.

The functions are separated into the following toolbox sections:

5.0 SG basic shapes: Generation of elementary solid bodies

5.1 Spatial Transformation: Spatial rotation and movement of SG

5.2 SG of CPL Extrusion: Extrusion of boundary contours

5.3 SG of CPL Connections: Connecting boundary contours

5.4 SG of Meshes: Creates SG from lines, edges, meshes

5.5 SG Cutting: Cutting SG into several parts

5.6 SG Boolean Operations: Boolean operations with surface models

5.8 SG Slicing: Layer separation of SG

5.0 SG basic shapes: Generation of elementary solid bodies

(SG-Library 4.7 Documentation -> Solid Geometry Modeling -> SG basic shapes)

These functions directly create a solid. These are simply basic shapes that are used more frequently, for example when marking coordinate systems or converting
text into 3D letters.

The following toolbox functions belong to this group:

VLFLweave(x,y,n,m,h,b,s,f) - returns the vertex list XVL and facet list XFL of a weaved rectangle

VLFLyarn(l,n,ld,b,h,s,u) - calculates vertex list and facet list for a wire-yarn

VLFLcylinder(Z,R,f,o) - calculates vertex list and facet list for a cylinder

VLFLellipse1(Z,Rx,Ry,dx,f) - returns a vertex list and a facet list for a defined tube geometry

VLFLtext(text,dt,t,sx,sy,sz) - returns vertex/facet list for a text string

VLFLexpboard(text,dx,dy,dz,nx,ny) - returns vertex/facet list of a test board with textural description

VLFLellipse2(H,Rx,Ry,dx,f,sn,h,sb) - returns a vertex list and a facet list for a defined light weight tube geometry

VLFLellipse3(rx,ry,rz,dr,nc,na,nb) - returns light weight structure of a closed sphere or ellipsoid

VLFLcreateframe(X,Y,H,b) - returns a solid frame model in the x/y plane

VLFLcreateblock(X,Y,H) - returns a solid block model in the x/y plane

VLFLdome(RZ,RX,RY,wall,nfo,nfi) - return VL and FL of a dome

VLFLhemisphere(CL,RZ,wmin,wmax) - returns a surface of a hemishpere

VLFLpost(h,RX,RY,wall,nfo,nfi) - returns VL and FL of a hollow post

VLFLcap(ZP,ZD,RX,RY,wall,nfo,nfi) - returns a tube covered with a cap

VLFLcone(H,R,nf) - returns vertex list and facet list for a cone solid

SGtext(SG,stext,ez,sx,sy,ha) - returns a SG that does fit on the surface on another SG

SGlinkage(R,D,H,RA,D2) - returns the solid geometry of a linkage

SGbox(S,n) - returns soldi geometry of a origin centered box

SGsphere(R,nr,wt,wb,Ry,Rz) - returns a spherical SG with minimal nr of points

SGcone(H,R,nf) - returns a solid geometry of a cone

SGspherelink(Lz,R1,R2,olap) - returns a spherical link

5.1 Spatial Transformation: Spatial rotation and movement of SG

(SG-Library 4.7 Documentation -> Solid Geometry Modeling -> Spatial Transformation)

This group of functions has the task to move the bodies in space absolutely or relative to each other or relative to frames or feature surfaces.

The following toolbox functions belong to this group:

SGtransP(SG,p) - moves a solid geometry (or a list) relative using a translation vector

SGtrans0(SG) - moves a solid geometry (or a list) into the origin of the coordinate system

SGtrans1(SG) - moves a solid geometry (or a list) into quadrant 1 of the coordinate system

SGtransR(SG,R) - rotates a solid geometry (or a list) relative using a rotation matrix

SGtransT(SG,T) - transformats a solid geometry or list using a homogenous transformation matrix

SGtrans(SG,T) - multi transformation modes for a solid geometry

SGtransrelSG(SGA,SGB,rel,gap) - changes position of a solid relative to another solid

SGtransrelT(SG,T0,T) - tranforms a solid relative to known one

5.2 SG of CPL Extrusion: Extrusion of boundary contours

(SG-Library 4.7 Documentation -> Solid Geometry Modeling -> SG of CPL Extrusion)

With the help of these functions planar polygons can be extruded by translation or rotation or along a path and the consideration of coordinate systems to bodies.

The following toolbox functions belong to this group:

SGofCPLz(CPL,z) - returns a 2½D extruded Solid volume from a contour polygon list (CPL)

SGofCPLrot(CPL,n,rcorr) - returns a solid geometry from of a z-axis rotated closed polygon list

SGofCPLsphere(CPL,Ri,d,ns) - returns solid geometry of a wrapped shell

SGofCPLT(CPL,T) - returns a extruded SG from a CPL and a final T matrix

SGofCPLzdelaunayGrid(CPL,z,ds,dx,dy) - returns a solid from a contour polygon list and grid resolution

SGofCPLzchamfer(CPL,z,ph,ed); - returns a solid with chamfered edges

SGofCPLrota(CPL,alp,mov,amin,h) - returns a solid geometry by rotateing a closed x z contour around z axis

SGofCPLtransT(CPL,T1,T2) - returns a solid from a 2D contour and a list of frames

5.3 SG of CPL Connections: Connecting boundary contours

(SG-Library 4.7 Documentation -> Solid Geometry Modeling -> SG of CPL Connections)

In contrast to extrusion, there are also tasks in which two, potentially nested, contours are to be connected via an outer surface. The task here is to

a) to transfer different forms into each other

b) Assign inner and outer contours

c) map several contours to another or one to several contours

5.4 SG of Meshes: Creates SG from lines, edges, meshes

(SG-Library 4.7 Documentation -> Solid Geometry Modeling -> SG of Meshes)

5.5 SG Cutting: Cutting SG into several parts

(SG-Library 4.7 Documentation -> Solid Geometry Modeling -> SG Cutting)

This group of functions has the task to move the bodies in space absolutely or relative to each other or relative to frames or feature surfaces.

The following toolbox functions belong to this group:

SGcut(SG,z) - Cuts a solid geometry into 2 parts at a defined z-plane

SGcut2(SG,z) - Cuts a solid geometry by inserting vertices and facets

SGcutBB(SG,ax,de) - cuts out a bounding box from a solid

SGpuzzlecut3D(SG,bsiz) - creates from a large solid geometry smaller printable parts

SGcutT(SG,Ts,centxy,expl,ct) - cuts an object below a arbitrary plane using SGcut relative to the center of floor of bb

5.6 SG Boolean Operations: Boolean operations with surface models

(SG-Library 4.7 Documentation -> Solid Geometry Modeling -> SG Boolean Operations)

The following toolbox functions belong to this group:

SGbool3(flag,A,B,thr,tho) - Boolean operators for solid geometries

SGbool3(flag,A,B) - returns the result of a boolean operation on two solids

SGbool4(flag,A,B,thr) - returns the result of a boolean operation on two closed elementary solids

SGbool5(flag,A,B,thr) - returns the correct result of a boolean operation on two closed elementary solids

SGbooltest(tests) - Procedure to test different cases using SGbool and CSGsample

SGboolanalyze(A,B,thr) - plots the two separated surfaces of A and B when crossed

SGboolTL(A,op,B,Amin) - returns a Boolean operation including re T esse L ation

5.8 SG Slicing: Layer separation of SG

(SG-Library 4.7 Documentation -> Solid Geometry Modeling -> SG Slicing)

This function group creates cross-sectional contours of solid bodies, as they are necessary for dimensions or technical drawings, cutting patterns or the
construction of bodies over layered plats.

The following toolbox functions belong to this group:

VLELslicer(VL,FL,z) - returns the crossing vertices and lines of a sliced object

VLFLofrangez(VL,FL,z1,z2,sname) - returns a reduced facet list and resorted vertex list for all facets of a specified plane

PLELcheckerr(PL,EL,slicence) - checks whether a point list and edge list are correct

SGslicer(SG,z) - returns the delaunayTriangulation of the sliced plane

FILofrangez(VL,FL,z1,z2) - returns an facet index list for facets crossing a plane

SGslicer(SG,z) - returns the delaunayTriangulation of the sliced plane

CPLsingleSolidSlicer(VL,FL,slz) - Sliced CPL of a single closed surface

CPLofSGslice(SG,z) - returns the CPL of a sliced SG

CPLofSGslice2(SG,z) - return slices of a separated SG

CPLofSGslice3(SG,z) - returns CPL and CVL for different sliced heights and directions

VLELslicer2(VL,FL,z) - returns the crossing vertices and lines of a sliced object

CVLofSGslices(SG,n,l,thre) - returns slices as CVL (CPL including z) of a SG

6 Frames and Kinematics: Generation of coordinate systems and kinematic chains

(SG-Library 4.7 Documentation -> Frames and Kinematics)

With these functions coordinate systems (frames) can be created to design kinematic chains of moving mechanisms, but also to be able to arrange bodies
spatially to each other. Since frames are often relative to surfaces with certain properties, the concept of feature surfaces is explained here.

The real-time simulation of movements is implemented with multi-body simulation functions.

The functions are separated into the following toolbox sections:

6.1 Frame Definition : Attaching Frames to a Solid Geometry

6.2 Kinematics Chains: Creating Numerical Kinematic Chains

6.3 Forward and Inverse Kinematic: Robotics

6.4 Symbolic Definitions: Creating Symbolic Kinematic Chains

6.5 Fourbar Linkage: Mechanism Design

6.1 Frame Definition : Attaching Frames to a Solid Geometry

(SG-Library 4.7 Documentation -> Frames and Kinematics -> Frame Definition)

The following toolbox functions belong to this group:

SGTui(SG,N,fe,FS,Rz) - returns a HT matrix for a manuel selected union space

SGTremove(SG,N) - removes a transformation frame from a solid geometry

SGT(SGN,N,SN) - returns a called HT-Frame from a solid's struct

SGTget(SGN,N) - returns a named frame of a solid geometry

SGTset(SGN,N,T,TFiL) - sets or replaces a named frame of a solid geometry

SGTplot(SGN,N,SN) - simply plots solid including frames

SGTframeplot(SGN,N) - plots one ore more frame of a solid

SGTsetorigin(SG,Nam) - moves the solid into a position that the base frame become the origin

SGTBB(SG) - replaces the complex surface geometry by a simplified bounding box

6.2 Kinematics Chains: Creating Numerical Kinematic Chains

(SG-Library 4.7 Documentation -> Frames and Kinematics -> Kinematics Chains)

The following toolbox functions belong to this group:

SGTchain(SGs,phi,z,nums,extr,B,F) - returns the spatial transformed solids of a kinematic chain

SGTcalibchain(SGs,phi,Fram) - changes the base frames of a set of solid geoemtries

SGTframeChain_39(nums,extr,B,F) - returns a list of frame connections for a cell list if solids

6.3 Forward and Inverse Kinematic: Robotics

(SG-Library 4.7 Documentation -> Frames and Kinematics -> Forward and Inverse Kinematic)

The following toolbox functions belong to this group:

invkinplan2(l1,l2,PL) - returns the inverse kinematic for a planr 2 arm robot

invkinrplan3(d1,a2,a3,VL) - returns the angles for a rotating planar two arm kinematic

forwkinrplan3(d1,a2,a3,WL) - forward kinematic of a planar rz 2 arm rotating around an arm z axis

6.4 Symbolic Definitions: Creating Symbolic Kinematic Chains

(SG-Library 4.7 Documentation -> Frames and Kinematics -> Symbolic Definitions)

The following toolbox functions belong to this group:

SGTofDenavitHartenberg(D,A,be,r,g) - returns from Denavit-Hartenberg values, a solid, frames and a symbolic description for DH

SGTofDHset(DHS,r,g) - returns the solids for a kinematic chain defined by DH parameter

6.5 Fourbar Linkage: Mechanism Design

(SG-Library 4.7 Documentation -> Frames and Kinematics -> Fourbar Linkage)

The following toolbox functions belong to this group:

fourBarLinkage(a,b,c,d,wb,k1,k2) - multi purpose function for a 4-Bar-Linkage

SGfourBarLinkageKit(task,2,3) - Creation kit for Four-Bar-Linkages

synth4Bar2Pose(C1,D1,C2,D2,d,la,lb) - returns 4 points for a 4 Bar linkage

calc4BarAngle(A0,B0,A1,lb,lc) - returns 4-Bar-Linkage points for link B

plot4Bar(A0,B0,A1,B1,wl,cc) - plots a 4-Bar-linkage

synth4Bar3Pose(C1,D1,C2,D2,C3,D3,d) - returns 4 points for a 4 Bar linkage

7 Automatic Design, Optimization, Simulation: Solid Geometries, Joints, Mechanisms, Robotics

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation)

The SG library was originally written for this function group. The goal is to move from a manual or geometrically parameterized design to a criteria-based
automatic design or an automatic optimization for criteria. Not only geometries but also kinematics and mechanisms should be designed automatically and
optimized.

Manual interactive design steps are always necessary when there is no concept for the efficient formulation of the task.

The functions are separated into the following toolbox sections:

7.1 Parameterized Shape Generation:

7.2 Parameterized Links and Joints: SG for mechanisms

7.3 Automatic Shape Generation:

7.4 FEM and Shape Optimization: Analysis and shape optimization of SG with the PDE toolbox

7.5 Multi-Body Simulation: Dynamic multibody simulation with Simulink/Simscape/Multibody

7.1 Parameterized Shape Generation:

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation -> Parameterized Shape Generation)

The automatic design was based on the use of parameterized constructable solid bodies. It can be simply imagined that a screw diameter is determined
according to the necessary tensile force acting on the screw. Instead of specifying the diameter, the force is specified and the diameter is calculated automatically.
Nevertheless, the screw must also be designed according to DIN/ISO if the diameter is known. Instead of M6.234, M8 is selected, since M7 does not exist and it
must always be greater than M6. Then the screw geometry must be calculated from the specification. The parameterisable design functions serve this purpose.

The aim of the automatic design is also to reduce the number of necessary parameterized designable basic elements.

The following toolbox functions belong to this group:

DIN336(d) - returns the parameter of the DIN 336 table

DIN13(M) - returns the DIN-13 table for a metric threads

lofbendinggirder(h,b,s,F,E,Slim) - returns the length of a bended girder

sofbendinggirder(l,h,b,F,E,Slim) - returns the expected bending of a girder/cantilever

VLFLsnapfit(RI,RA,D,Hf,H,sh,Hh) - returns VL and FL of a snapping hollow axle

DINhelp - open different urls for DIN and ISO Standard Machine Elements

DIN913(M) - returns the DIN913/ISO4026 table for a metric threads

SGiso4026(M,L,imb) - SG of Hexagon socket set screw with flat point

DIN912(M) - returns the DIN912/ISO4762 table for a metric threads

SGiso4762(M,L) - SG of Hexagon socket set screw with cylindric head

7.2 Parameterized Links and Joints: SG for mechanisms

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation -> Parameterized Links and Joints)

With these functions, parameterized joints and structures can be designed to transform solid bodies into moving bodies. The functions are used for shaping and
can already have frames to model kinetic chains.

The following toolbox functions belong to this group:

SGmodelJoint(Ty,pos,SL,EL) - returns 3 separated Solids for automated design of joints

SGmodelNode(D,L,R,CPL,ez) - returns a solid geometry of a post as fixed node

SGmodelLink3(L,lb,lf) - retuns solid geometries for R linkages

SGmodelKeyhole(RA,RO,rw,LA,LO,HO,slot) - Creates a SG including a key and a keyhole

SGmodelLink1(L,D,SL,EL,DH,DL) - SG of a cylindric rod

SGmodelLink2(L,L1,L2,K,H) - Creates Solid for a Link im Style "Link2"

SGsimpleHinge(H,D,X,sl,ch,oa,ba,Ri); - returns a simple swivel hinge

7.3 Automatic Shape Generation:

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation -> Automatic Shape Generation)

In contrast to parameterized form generation, automated or function-based form generation makes geometry generation dependent on the achievement of certain
criteria.

For example, the force for compressing snap hooks is defined and the shape of these catches is calculated so that the force is reached.

The following toolbox functions belong to this group:

VLFLsnaprivet(Hb,Rb,Dw,Rf,Hf,m,F) - returns the solid geometry (VL,FL) of a male snap rivet push pin with a speficied opening force

7.4 FEM and Shape Optimization: Analysis and shape optimization of SG with the PDE toolbox

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation -> FEM and Shape Optimization)

FEM analysis and stress-based shape and topology optimization is based on the automated generation and modification of tetrahedron models for the Matlab
PDE toolbox from SG library surface models.

The procedures for shape and topology optimization according to Sigeki Hirai and Claus Mattheck were implemented by Yilun Sun.

The functions are separated into the following toolbox sections:

7.4.1 Mesh and Model Creation:

7.4.2 Load Definition and FS:

7.4.3 Stress and Displacement:

7.4.4 Shape Optimization:

7.4.1 Mesh and Model Creation:

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation -> FEM and Shape Optimization -> Mesh and Model Creation)

The following toolbox functions belong to this group:

SGtetramesh(SG,h) - creates a tetramesh of a Solid Geometry

pdemodelofSG(SG,h,e) - creates a pde model from a solid geometry

7.4.2 Load Definition and FS:

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation -> FEM and Shape Optimization -> Load Definition and FS)

The following toolbox functions belong to this group:

pdeplotfaces(model) - simply plots the surfaces to select

SGplotsurfaceload (SG,fixfacet,loadfacet,loadvec) - plots the surface load of a solid geometry

7.4.3 Stress and Displacement:

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation -> FEM and Shape Optimization -> Stress and Displacement)

The following toolbox functions belong to this group:

pdesolvesurfaceload(model,fixfacet,loadfacet,loadvec) - calculates the FEM analysis using pde for a pde mesh model

pdeplotresult(model,result) - plots the displacement in 3 quadrants

pdestressstatic(model,result,inputParser) - returns the calculated static stress inside a SG based on a pde model

7.4.4 Shape Optimization:

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation -> FEM and Shape Optimization -> Shape Optimization)

The following toolbox functions belong to this group:

SGshapeOptiCAO(SG,) - returns the optimized shape of a given structure based on biological growth

7.5 Multi-Body Simulation: Dynamic multibody simulation with Simulink/Simscape/Multibody

(SG-Library 4.7 Documentation -> Automatic Design, Optimization, Simulation -> Multi-Body Simulation)

The dynamic simulation of multibody models in the SG library is based on the automated generation of SimulinkSimscapeMultibody models via the programming
interface of SimulinkSimscape. Since SimulinkSimscape is also subject to continuous changes, these functions are particularly dependent on the respective
Matlab release.

8 STL & 3D Printing & Voxel Models: Handling of STL, DICOM, CVG for 3D printing and lasercutter

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models)

Since the SG library was originally designed for the automatic design of additive-manufactured, patient-specific medical robots, there are a number of import
functions for design data and medical data as well as export functions for controlling 3D printers (solid-state structural elements) and laser cutters (textiles or
layer-based additive manufacturing (LOM)).

The functions are separated into the following toolbox sections:

8.1 STL Import/Export: Reading and writing STL files

8.2 STL Packaging: Spatial arrangement of SG

8.3 STL Surfaces Analysis: Analysis of closed surfaces

8.4 SVG Export: Export of cut contours

8.5 Voxel Models: Conversion between SG and Voxel models

8.1 STL Import/Export: Reading and writing STL files

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models -> STL Import/Export)

The import of STL files is necessary to create design programs such as CATIA, Solidworks, AutoCAD and the STL libraries of online vendors such as Conrad
Electronics or CAD archives such as GrabCAD.

The export of STL files is necessary to control 3D printers. For this reason, the functions also support the compilation of print jobs and the separation or
combination of individual components into one print job.

The functions VLFL functions return the vertex list and facet list sepearat in contrast to the SG functions. If possible, the VLFL functions should be avoided if there
is a comparable SG function.

The following toolbox functions belong to this group:

VLFLwriteSTL (VL,FL,FNAME,ONAME) - writes a STL object given by vertex list and facet list in a STL-file

VLFLreadSTL(FName,mag,check) - reads an ascii STL-File as vertex & facet list

VLFLreadSTLb(FName,mag,check) - reads a STL-File in binary format

VLFLwriteSTLb(VL,FL,FNAME,ONAME,vcol) - writes a STL object in binary mode given by a vertex list and facet list into a STL-file

STLAsctoBin (fname) - reads and STL-File in ASCII format and writes it in binary format

STLseparate(fname) - separates all independent objects of a given STL-File into a set of individual STL files

VLOLwriteSTLb(VL,OL,i) - writes a separated object as binary stl file

SGwriteSTL(SG,FNAME,ONAME,vcol) - Writes a STL file for a solid geometry

VLFLwriteSTL (VL,FL) - writes a STL object given by vertex list and facet list in a STL-file

SGwriteMultipleSTL (SG,FNAME,ONAME) - writes solid geometry in different STL files

8.2 STL Packaging: Spatial arrangement of SG

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models -> STL Packaging)

This function group is used to prepare 3D print jobs. Multiple solids can be combined into one print job (SG Cpntainer), they are automatically arranged on
minimal volume and possibly enclosed by an optionally labeled box.

This group of functions also includes the functions for duplicating solid geoemtries in symmetric arrangements as well as the analysis of solid geoemtries and the
detection of independent, non-penetrating individual solids.

The following toolbox functions belong to this group:

SGarrangeSGC(C,Vol3D,Dist3D) - arranges all parts of a SG container

SGboxing(SG,wall,slot,stext,ms,ha) - returns a case for boxing a SG model

SGpatternXYZ(iSG,n,t) - copies solid geometries along xyz-axis

SGcopyrotZ(SG,rotangz,tdist,n) - copies a solid around the z-axis

SGarrangeSG(SGc,dist,adim) - arranges a cell list of solids in a single row

SGboxpacking(SG,tstr,dim,turn) - combines SGpacking and SGboxing

8.3 STL Surfaces Analysis: Analysis of closed surfaces

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models -> STL Surfaces Analysis)

After reading STL files created by a program like CATIA, Solidworks, AutoCAD, it is helpful to analyze the elements whether they are "waterproof" objects or
several independent closed or open surfaces.

The following toolbox functions belong to this group:

SGpacking(SGC,dim,dist,ez,turn) - returns a package of all solids of a cell list

SGanalyzeGroupParts(SG,gmethod) - returns parts of penetrating solids group colored

SGwriteSeparatedSTL (SG,FNAME,ONAME) - writes solid geometry in different STL files

SGsurfaceplot(SG,SIL,si) - plots the separated surfaces of SG in different colors

SGsurfaces(SG,slct) - returns a cell list of separated CLOSED surfaces similar to SGseparate

SGsurfacehistogram(B,si,be) - plots a surface area histogram of selected surfaces

surfacesofSG(TR,alpha) - returns all feature surfaces (open boundaries) that have a limited angle between their normal vectors

8.4 SVG Export: Export of cut contours

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models -> SVG Export)

The SVG file format can be used to convert contours into cut files for laser cutters. It can be used to cut textiles or neoprene that have been precisely designed to
fit exoskeletons or to cut Sold Geometries into layers for laminar production and then produce them layer by layer on a laser cutter.

The following toolbox functions belong to this group:

CPLwriteSVG (CPL,FNAME,ONAME,cutter,colmap,stkwd) - writes a SVG file for a laser cutter

8.5 Voxel Models: Conversion between SG and Voxel models

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models -> Voxel Models)

The functions are separated into the following toolbox sections:

8.5.5 VM Import & Scaling:

8.5.6 VM Visualization:

8.5.7 VM to VL, CPL:

8.5.8 VM to SG Surface Model:

8.5.5 VM Import & Scaling:

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models -> Voxel Models -> VM Import & Scaling)

The following toolbox functions belong to this group:

VMreaddicom(pathname,filename,xsiz) - reads an image (nxn) or image stack (nxnxm) from a dicom directory

VMuidicom(filename) - reads in a dicom file or opens a dialog first

VMreaddicomdir(pathname) - reads a dicom directory into an image stack

VM(I) - returns a matrix of reduced size if required (squeeze)

VMresize(VM,dm,vs) - resizes a voxel image model

8.5.6 VM Visualization:

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models -> Voxel Models -> VM Visualization)

The following toolbox functions belong to this group:

VMplot_2012 (IM,p,SG) - plots a 3D volumetric matrix in 2x2 view

VMimage (IM,p) - returns three crosssectional views of an image stack (voxel model)

VMimrot90(I) - returns an 90 degree rotated image (nxm) or image stack (nxmxk)

VMmontage(V) - plots all images of an image stack into one figure

VMpseudo3D(V,lim,maxc,s) - returns an 2D image of pseudo 3D rendered surface

VMplot (IM,p,SG) - plots a 3D volumetric matrix in 2x2 view

VMginput(n,u) - returns a point position by clicking into VMplot

VMgetSubplot - returns the current active subplot

VMintensityscale(V,cax) - returns an intensity scaled voxel image

VMcaxis(cax) - adjustes the caxis of the VMplot diagram

VMwindowplot(V,cax,minv,maxv) - plots a voxel model using the window caxis function

8.5.7 VM to VL, CPL:

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models -> Voxel Models -> VM to VL, CPL)

The following toolbox functions belong to this group:

VLofVM(VM,vs) - returns the voxel coordinates as point list (can be long)

8.5.8 VM to SG Surface Model:

(SG-Library 4.7 Documentation -> STL & 3D Printing & Voxel Models -> Voxel Models -> VM to SG Surface Model)

The following toolbox functions belong to this group:

TR3ofVM(V,vs,s) - returns a

VLFLofVMmarchcube(V,vs) - returns a surface model by the marching cubes

VLFLofVMdelaunay(V,vs,s) - returns a surface model for a delaunay reconstructed volume model

SGofVMmarchcube(V,vs,cl) - returns a surface model by the marching cubes

SGofVMdelaunay(V,vs,s) - returns a surface model for a delaunay reconstructed volume model

VMofSG(SG,n,adjxy,shsl) - returns a voxel model of a Solid Geoemtry

SGofVMisosurface(V,vs,cl) - returns a surface model by the marching cubes

9 Testing and Test Generation: Systematic testing of geometries and functions

(SG-Library 4.7 Documentation -> Testing and Test Generation)

When developing new functions and compiling a new toolbox version, it is necessary to test the new functions or the functionality of the functions in a new Matlab
release. For this purpose, there are a number of tools that are constantly being supplemented and expanded

The functions are separated into the following toolbox sections:

9.1 Sample Generation: Generation of PL, CPL, VL, CVL, VLFL, SG, CSG etc.

9.2 Test Generation: Methods for the systematic testing of functions

% * *9.3 SG Check:* Detection and repair of defects in surface models
% * *9.4 SG Repair:*
% * *9.5 Software Development:*

9.1 Sample Generation: Generation of PL, CPL, VL, CVL, VLFL, SG, CSG etc.

(SG-Library 4.7 Documentation -> Testing and Test Generation -> Sample Generation)

Sample data with defined properties can be generated for testing a wide variety of functions.

PLsample for point lists

CPLsample for nested contours

VLsample for point list

VLFLsample for open surfaces

SGsample for closed bodies

CSGsample for parsing bodies for boolean operation on SG

still lacking

ELsample for example for edge lists

The following toolbox functions belong to this group:

SGsample(Nr,T) - returns a solid geometry for sample bodies used for testing and experiments

CPLsample(Nr,T) - returns a a closed polygon list for different tests and experiments

VLsample(Nr,T) - returns a sample vertex list for testing algorithms

PLsample(n) - returns a 2D PL list similar to VLsample

VLFLsample(Nr,T) - returns OPEN surfaces as samples for procedure testing

CSGsample(Nr,spatrel) - Cross-Pair Samples returns two solids as examples for crossing solids

9.2 Test Generation: Methods for the systematic testing of functions

% (SG-Library 4.7 Documentation -> Testing and Test Generation -> Test Generation)
%
% The function of this group is to enable the creation of systematic tests and to re-test all Matlab functions after ch
anges, preferably improvements, with extensive parameter sets.
%
%

The following toolbox functions belong to this group:

VLFL_Toolbox_test (tnr) - publishes all tutorials to test the compliled Toolbox version

imageofVLprojection(VL,isize,pc,pt,pixnum,cup) - returns an image of a VL projection using the matlab camera view concept

testfunctTL(Eterm,) - testing macro that executes creates a list of different parametertests

subfig (p) - creates subfigures on the screen similar to subplot

9.3 SG Check: Detection and repair of defects in surface models

(SG-Library 4.7 Documentation -> Testing and Test Generation -> SG Check)

After reading in an STL file that was not created with the Toolbox or during the development of new Toolbox functions or in case of unexpected termination of
already tested functions, it makes sense to test Surfaces or surfaces for their correctness or anomalies. These functions are used to get an overview of error
types or to recognize the type of modeling. A well-known software tool for the evaluation of STl files is the program Meshlab. Similarly, the functions are examined
here:

1. open edges of bodies or surfaces

2. non-manifold edges, i.e. edges used by more than one surface

3. non-manifold vertices, i.e. vertices used by more than one interface

In addition, there are other important tests such as:

4. test for self-penetration

The following toolbox functions belong to this group:

SGchecker(SG) - performs a check of the vertex list and facet list to detect non manifold problems

SGcheckfacedist(SG,fnum,wlim,ilim) - Checks the distance between the centers of the facets

VLFLchecknonmanifoldedges(VL,FL); - returns the edges and facets with non manifold edges

VLFLchecknonmanifoldvertices(VL,FL); - returns the non manifold vertices, i.e. identical points used in separated surfaces

SGmeshlab (SG,RBchange) - opens a solid geoemtry in an STL viewer

SGchecknonmanifoldedges(SG) - returns the edges and facets with non manifold edges

SGchecknonmanifoldvertices(SG) - returns the non manifold vertices, i.e. identical points used in separated surfaces

VLFLcheckboundaryedges(VL,FL) - returns the open boundaries of the surface

SGcheckboundaryedges(SG) - returns the open boundaries of the surface

VLFLcheckmeshlab (VL,FL) - performs the most important checks for STL files

SGcheckmeshlab (SG) - performs the most important checks for STL files

VLcheckvertexaccuracy(VLorg) - returns the sufficient number of digits for rounding the vertex coordinates of a solid

9.4 SG Repair:

(SG-Library 4.7 Documentation -> Testing and Test Generation -> SG Repair)

The occurrence of certain "errors" or rather "imperfections"

1. open surfaces

2. non manifold edges

3. non manifold practice

4. self-penetration of areas or points

and many other imperfections

usually goes unnoticed because the surfaces can be easily displayed on the screen and processed further with functions. Especially the additive production with
the basis of slicing is quite insensitive. Boolean operations or the generation of tetrahedron meshed (PDE toolbox) are very sensitive.

For this reason heuristic strategies are needed that try to correct the surface tessellation. This is not always possible and not always clear. Nevertheless, there are
classic problem cases that are generated by CAD programs or by shape optimization (SGshapeOptimization) or the generation of bodies from surfaces or voxel
volume data.

The functions in this group are a collection of proposed solutions:

9.5 Software Development:

(SG-Library 4.7 Documentation -> Testing and Test Generation -> Software Development)

Dependencies play a role in software development when functions are packed into toolboxes or when the names of functions in the source code are changed.
DAz concept has been changed several times over the years at matlab.

The idea is:

depuse - Who uses this function

depfun - On which functions is this function dependent?

The following toolbox functions belong to this group:

depfunTL_2014b(fname,par) - returns all dependency files of a function that are not part of a toolbox

depuseTL2013(fname,dname,PrmStr) - returns all files of a directory that use a named procedure

depusewdTL(chdnum1,chdnum2) - Generates a dependency report file for TODAY and the current working directory

depuseToolbox(fname) - analyzes the current directory for the use of MATLAB Toolbox function

depuseString(sstr) - searches for string using the system command grep

depfunTL(fname,par) - returns all dependency files of a function that are not part of a toolbox

depuseToolbox(sstr) - analyzes the current directory for the use of MATLAB Toolbox procedure

depuseTL(fname) - return which fncts in the current directory uses a named fnct

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

